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Abstract

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment, communications, and
defense are familiar to the public. The significant
quantity of software malfunctions regularly reported
to the software engineering community, the laws
concerning liability, and a recent NRC Aeronautics
and Space Engineering Board report additionally

- motivate the use of error-reducing and defect detection
software development techniques.

.__: The benefits of formal methods in requirements-
driven software development ("forward engineering")

" is well documented. One advantage of rigorously engi-
neering software is that formal notations are precise,
verifiable, and facilitate automated processing. This
paper describes the application of formal methods to
reverse engineering, where formal specifications are
developed for a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

1 Introduction

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment [1], communications[2],
and defense [3] are familiar to the public. The
significant quantity of software malfunctions regularly
reported to the software engineering community [4],
the laws concerning liability [5], and a recent NRC
Aeronautics and Space Engineering Board report [6]
additionally motivate the use of error-reducing and
defect detection software development techniques.

The benefits of formal methods in requirements-
driven software development ("forward engineering")
is well documented [7, 8, 9, 10]. One advanta-ge
to using rigorous approaches to software engineering

"Tb.is author is also supported in part by NSF grant CCR-
9209873.

is that formal notations are precise, verifiable, and
facilitate automated processing [11, 12, 13].

We claim that maintenance of critical existing
_"legacy") code also benefits from formal methods.
rot example, formal specifications can be reverse
engineered from existing code. The resulting
formal specifications can then be used as the
basis for change requests and the foundation for
subsequent verification and validation. Considering
re-implementation's high cost and, even worse, the
failure of critical software, reverse engineering of code
into formal specifications provides an alternative or a
supplement to traditional approaches for maintaining
safety-critical systems.

This paper describes a project that applies formal
methods to a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

In additionto developingformalspecificationsofs
criticalmodule, a graphicaldepictionofthe subsystem
was constructedusing the ObjectModeling Techniqwe
(OMT) [14] to provide an object-oriented view of the
system as it relates to the functional and dynamic
views. Lessons learned from this project are described,
including discussions of the benefits of constructing
specifications and the ability to generate proofs from
the formal specifications.

The remainder of the paper is organized as
follows. Section 2 gives a brief introduction to formal
methods and object-oriented development techniques.
Section 3 gives an overview of the entireproject,
includinga discussionof the object-orientedanalysis
and the development of the OMT diagrams. A
summary of lessonslearned from this project are
discussedin Section4. Finally,concluding remarks
and futureinvestigationsare given inSection5.

2 Background Material

This sectionbrieflydefinesand motivatesthe use of
formalmethods. Also,the benefitsofobject-oriented
analysisand designare presented.
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2.1 Formal Methods

Formal methods in software development provide
many benefits in the forward engineering aspect
of software development [7, 8, 9, 15]. For
any specification, there can be any number of
implementations that satisfy the specification [16].

Due to the criticality and the volume of much of the
software being developed by many agencies involved in
flight systems, there axe several projects incorporating
formal methods into the software development process
[17]. In addition, there have been recent investigations
into reverse engineering that focus on the use of
rigorous mathematical methods for extracting formal
specifications from existing code [18, 19, 20].

A formal method consists of a formal specification
language and formally defined inference rules [15].
The specification language is used to describe the
intended system behavior and the inference rules
provide a sound method for reasoning about the
specifications. Using formal specifications for software
design serves several general purposes. First, it
forces the designer to be thorough in the development
and the documentation of a system design. Second,
the developer is able to obtain precise answers to
questions posed about the properties of the system,
and therefore be able to rigorously test (by developing
theorems) the design for the satisfaction of its
requirements. Unfortunately, since the requirements
are traditionally expressed informally, there remains
a (albeit decreased) potential for errors to remain
undetected. Third, the developer is able to reason
about the correctness of a system or a safety-
critical component of the system with respect to its
specification. The latter category of reasoning can
be divided into two approaches: program verification
and program synthesis. Program verification is the
process of checking the semantics of a program text
against its specification. A program whose semantics
satisfies its specification is said to be correct. Program
synthesis refers to formal techniques for systematically
developing a program from a specification such that
the correctness of the resulting program (with respect
to its specification) is inherent in the development
processitself[21,22, 23,13].

Formal methods are typicallymore difficultto
apply than informalapproaches and requirea great
deal more discipline.Furthermore, the stateof the
currenttechnologyissuch that verificationand the
use offormal methods islargelydone manually,thus
requiringa tremendous effortto perform tedious,
but necessarytasks. In general,the introduction
of formalityin software development is a difficult
but valuablestep in the constructionof reliableand
maintainable computer systems. The difficultyis
largelydue to the quantity of detailrequired by
formalizationas wellas the tediousprocessby which
the formalismsmust be manipulated. However, the
detectionand correctionof design flaws,abilityto
use automated toolsformanipulation,eliminationof
ambiguity, precisedocumentation for maintenance,
and improved reusabilityare a few examples of the
overwhelming value,and oftennecessarybenefits,that
formal methods bringsto the softwaredevelopment

process.

2.2 Object-Oriented Techniques

There axe a wide variety of approaches to
requirements analysis, many of them in the broad
category known as object-oriented requirements
analysis (OOA) [14]. An object is a data abstraction,
and it is the goal of OOA to construct an abstract,
object-b_sed model of the problem domain. The OOA
focus on objects is in contrast to the more traditional
approach to analysis that focuses on procedures [24].
That is, instead of modeling the problem domain as a
system of operations that process data objects, OOA
modeling centers on a description of data objects and
their interactions.

Most OOA techniques begin by a careful assessment
of the natural language problem description. A simple
first step in developing an OOA model is to extract the
nouns from the problem description. Many of these
nouns will share common properties and may be more
easily described as instances of types. For example,
Galileo, Voyager, and Magellan are all spacecrafts,
and Venus, Mars, and Mercury are all planets. In
this context, spacecraft and planet can be considered
as types, where the type of an object is called its
class. Some classes, referred to as subclasses, may
be specializations of other classes. For example, an
interplanetary spacecraft is a specialization of the type
spacecraft. As such, OOA organizes types into a
class hierarchy based on a isa (as in "an X is a Y")
relationship.

It may be natural to think of an object as
being composed of other objects. For example, an
interplanetary spacecraft may consist of numerous jets,
guidance and navigation control system, and a probe
to study a planet's atmosphere. This dependence
introduces an additional dimension of relations into
the class hierarchy, that is, a part of relation. The
parts of an object axe often called its attributes.

The nouns of the problem description can be
used to identify candidate objects (and therefore,
classes), and accordingly, the verbs in the problem
description can provide information on interactions
between objects. Some verbs may describe a service
for a particular class of objects, such as fire in the
phrase "fire the jets". Other verbs may describe a
possible state of an object, such as coast in the phrase
"the spacecraft begins to coast." Therefore, verbs help
to define the services of a class of objects, usually
referred to as the operations or methods of a class,
and the computational processes of the system as a
whole (the dynamic behavior).

In the early stages of software development,
includig object-oriented approaches, diagrams are
frequently used to describe requirements and guide
development. For example, data flow diagrams
DFD) [25] have been widely used to visualize
nctional behavior of processes. Entity-relationship

E-R) diagrams [26] have been used to pictorially
escribe a wide variety of concepts, foremost among

them is the relational data base organization.
In general, a single diagramming notation is

not sufficient to capture the complex information
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needed to build soRware systems _[27]. The
Object Modeling Technique (OMT) [14] uses DFDs,
hybrid E-R diagrams, and statecharts to model
software requirements using object-oriented concepts.
Collectively, these diagrams address properties that
should be modeled, including flow of control, flow
of data, patterns of dependency, time sequence,
.and name-space relationships. The OMT approach
ts appealing m its multiple views of software
requirements and is fairly comprehensive in its

beit informal) treatment of development issues.
rthermore, OMT is commonly used in industry and

in academic settings.

3 Project Overview
A portion of the shuttle software was chosen for

a formal methods demonstration project involving
NASA's Jet Propulsion Laboratory, Johnson Space
Center, and Langley Research Center [28]. This
multi-NASA site project was supported as a Research
and Technology Objectives and Plans (RTOP). A
related project of a smaller scale was performed
by the authors in conjunction with the larger
demonstration project. The Phaeu.Plaue module, the
control system for automatic attitude control of the
shuttle, was the subsystem selected for the smaller
project. The criteria that led to the selection of
Phase_Plane included finding a module with difficult
to understand requirements and potential for critical
change requests. Although the Phase.Plane module
has worked correctly in thousands of hours of use in
simulation and flight, its specific properties remains
obscure (at least to the requirements analyst and
software developers) [29].

Three tasks were performed in the development
of the formal specifications of the module's high-
level requirements. First, an understanding of the
original requirements was needed. This involved
consulting the Functional Subsystem Software Re-
quircments (FSSR) document [30] (also known as
Level C requirements, consisting largely of "wiring
diagrams"), Guidance and Control Systems Training
Manual [31], source code, informal design notes
[32], and discussions with shuttle software personnel.
An "as-built" formal specification capturing the
functionality depicted by the FSSR "wiring diagrams"
was then developed.

Second, when attempting to derive a more abstract
requirements-level formal specification, it was difficult
to eliminate the implementation bias present in the
as-built layer. A level of OMT diagrams was
developed to depict the information from the first
level of specifications. These diagrams facilitated the
abstraction process and lead to the next higher level
of specifications. This iterative process consisting of
developing a level of formal specifications, followed
by constructing the corresponding OMT diagrams
lead to the identification of the high level, critical
requirements of the Phasu.PZemu module. Example
specifications and OMT diagrams are described below.

The third task involved outlining proofs between
the levels of specifications developed. That is, each
specification must be shown to correctly implement

the more abstractspecificationabove it.These proofs
providetraceabilityfrom the implementation details
asdescribedby the "wiringdiagrams" tothehigh level
requirements.

3.1 Phase Plane

The Reaction Control System (RCS) Digital
Autopilot system (DAP) achieves and maintains
attitudethrough anerrorcorrectionmethod, involving

the control of jet firings. FiGure 1 gives a
high-levelview of the DAP, wnere the State
Estimatorgivesthe currentattitude,whiletakinginto
considerationspacecraftdynamics. This information
isthen suppliedto the Phase.P2ane component that
calculatesthe attitudeand rateerrorswith respectto
desiredvaluesspecifiedby the crew.

D_ffAL AUTOMtOT {DJ_

_ r------1 i i Ittm_
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Figure 1: High-level view of DAP, including the
Phue.Plane module [32]

A phase plane may be visualized as a graph plotting
spacecraft rate errors against attitude errors for one
rotational axis, with a "box" drawn around the center.
There is a separate phase plane for each of the vehicle
rotation axis (roll, pitch, and yaw). The "box"
(with parabolic sides), whose limits are defined by
the crew with attitude and rate deadbands, is used
to determine when, if, and in what direction rates
must be generated to null the errors [32]. If the
shuttle is within the specified desdband limits, the
rate and attitude errors are represented by a point
plotted inside the box. If the point travels outside
the box, then jets fire to return the point inside the
box, thereby reducing the errors and achieving the
maneuver request or maintaining the attitude hold as
requested by the crew. Figure 2 gives a simplified
graphical representation of the phase plane [30]. The
shaded regions depict the coast regions where the
Orbiter does not need any corrective action. The
remaining regions are known as hysteresis regions,
where external factors such as positive (negative)
acceleration drift, propellant usage, inertia, time lags
between firing commands, and sensor noise require
the calculation of corrective action to ensure that the
Orbiter remains within the deadband limits.

In an attitude hold situation, the error plot cycles
around the zero error point with jets turning off
and on again each time the limits of the "box" are
exceeded. This activity is known as "limit cycling" or
"deadbanding'. The phase plane generates positive
or negative rate commands on an axis by axis basis,
where the jet select component determines which
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jet;t(ss) to fire (the topic of the RTOP project [28]). The
dashed lines outline the deadbanding path in Figure 2.

The requirements for the Phase.Plane module
are described in terms of a "wiring" diagram (see
Figure 3 [30]), indicating the input and output values,
and several tables describing the calculation for the
boundaries of the phase plane and its different regions.
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Figure 2: Graphical depiction of the phase plane, with
coast and hysteresis regions [30]
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Figure 3: Simplified wiring diagram for the
Phase_Plane module [30]

3.2 Formal Specifications
One aspect of formal methods for critical software

development is the use of a particular rigorous
notation to precisely define the function of the system
and requirements that the system software mast meet.
These formal specifications are syntax- and type-
checked using compiler-like parsers. This project
used the PVS (Prototype Verification Systems) formal
specification tools [33, 34] under development by SRI
International. P VS is written in Common Lisp but
runs on interpreters of other Lisp dialects. A P YS
user, however, interacts with a customized Emacs [35]
interface and needs no knowledge of Lisp.

Our goal was to specify Phase.Pla_ae's functionality
and execution constraints at several levels of

abstraction. Specification of a system through
increasingly more detailed levels of abstraction is a
well-established strategy used by specifiers [15, 21].
Although these levels may appear almost disjoint, the
proof of correct refinement of a level of specification
by the level below assures the specifier the model
is correct in addition to providing requirements
traceability.

A general rule is that abstract, upper-level
specifications should establish system inputs, outputs,
and basic functionality of the system. Critical
correctness requirements that the system must satisfy
are stated at this level and become the criteria
by which the specification is judged to be correct.
Therefore, upper-level specifications tend to be black-
box models of the system.

Mid-level specifications introduce both data type
and functional detail that may constrain the eventual
implementation of the system. These levels are the
core of the specification since design decisions and
and execution environment issues can be introduced.
Change requests for modules will most likely be
addressed in these levels.

A low-level ("as-built") specification is a straight-
forward representation of a particular implementation.
It is from this detailed specification that source
code can be automatically generated, or verification
conditions for programmer-produced code derived.

The nature of Phase_Plane demanded a bottom-up
approach instead of the top-down strategy described
above. High-level English descriptions of this portion
of the shuttle DAP were readily available, as was
source code that had executed without error in
hundreds of hours of use. This project explored the use
of formal specifications to derive requirements that are
more detailed and precise than an English paragraph
and less obscure than tightly optimized source code.

A low-level formal specification was developed from
the existing source code, the Crew Training Manual
[31], and the low level "wiring diagrams" of data
flow and formula tables. This specification mirrored
the functionality of the existing system, but did not
offer an abstract view of the module's functional
requirements.

A high-level black-box specification was then
developed corresponding to the level zero DFD
(Figure 4). This formal specification did not
include implementation details. At this level it was
straightforward to state abstract properties that any
software implementing Phase_Plane must have.

Finally, a mid-level formal specification was
outlined to capture critical aspects of functionality
and requirements at a level useful to shuttle
"requirements analysts" when reviewing proposed
modifications to the-module. Due to time constraints,
this level is still under development.

The challenge at the mid-level is to omit extraneous
implementation details, yet be precise enough to
capture necessary properties concerning minimization
of fuel usage, thruster firings, and movement about
the desired attitude. Included in this challenge i§ the
linkage of the three specification levels by proofs that
trace abstract, critical properties from the top-level
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specification through the mid-level, and to the low
"code-lever' specification.

It should be noted that since the PVS environment
is interactive, it is possible for a user to make a "claim"
and attempt a proof of the claim immediately. This
feature can be particularly useful when attempting to
deduce requirements from a code-level specification.
This tactic can also be used to "test" a specification
interactively. A current NASA RTOP has documented
other advantages of formal methods in general and
P VS in particular [28].

3.3 Construction of OMT Diagrams
This section describes the OMT diagrams that

have been generated thus far for the Phase.Plane
module. Since we started the reverse engineering
process with the source code and implementation
specific wiring diagram of the Phase_Plane module,
we created two levels of data flow diagrams depicting
the flow of information into, from, and within
the Phase_Plane. These diagrams assisted in the
abstraction process to obtain an architectural view
of the phase plane as it related to the overall DAP
system, thus leading to the construction of the object
models. The object and the functional models
offered one level of abstraction, thus leading to the
development of the next layer of formal specifications
(mid-level specifications describing data structure and
operations on the data structures). Finally, using the
functional and object diagrams in conjunction with
the description of the deadbanding states, we created
the dynamic model for the Phase_Plane module. The
dynamic model depicts the states between jet firings as
the Orbiter deadbands. A high level of specifications
was generated based on the dynamic model.

The remainder of this section describes the OMT
diagrams constructed during the reverse engineering
and formal specification construction process.

3.3.1 Functional Models

Data flow diagrams (DFD) facilitate a high level
understanding of systems, both in terms of forward
and reverse enginering. Static analysis of program
code provides information that accurately describes
flow of data in a system. In general, process bubbles
denote procedures or functions of a given system.
Arrows represent data flowing from one process to
another. And rectangles represent external entities.

The simplest functional model (DFD) is a co,tez4
diagram or Level 0 diagram and is shown in Figure 4,
where the entire phase plane module is reduced to a

rOCeSSbubble, with the external input and output
beled. This diagram provides the context for the

process in question. Note that the Level 0 DFD closely
resembles the structure of the "wiring" diagram for
Phase_Planegiven in Figure 3.

The child diagram for Figure 4 gives the next level
DFD, which shows the different processes making up
the Phase_Plane module and is shown in Figure 5. In
this figure, the input variables are used to calculate
boundaries for the phase plane. The boundaries and
the attitude and rate limits are supplied to the process

YaAWnkO

Figure 4:
Module

d_ kind

High Level (0) DFD for Phaae.Plane

that calculates the thrust commands (jet firings).

. m hmab* _

Figure 5: Level 1 DFD for Phase.Plane Module

3.3.2 Object Models

Studying the %s-built" layer of specifications, the
different DFDs, and the requirements document for
Phase.Plane led to the development of an object
model for the Phase_Plane. As mentioned l)revious]y,
an object is a self-contained module that includes both
the data and procedures that act on that data. An
object can be considered to be an abstract data type
(ADT). A class is a collection of objects that have
common use [36].

The object diagram for the Phase_Plane is shown
in Figure 6 This diagram is a class entity with
attributes rate error, attitude error, and rotation
azis. The operation for this class is calcalate thrust
commands based on the rate and attitude errors.
Also included in the object diagram are Phase Plane
class instances (rounded rectangles) for each of the
rotational axes (roll, pitch, and yaw). Each of the class
instances will calculate different thrust commands
for each of the specific rotational axes. Notice
that there are two subclasses for the Phase Plane
class, Coast Region and Hysteresis Region. In the
coast region, the values of the attitude and rate
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errors are within acceptable hounds, thus there is
no need to calculate new thrust commands. In the
hysteresis region, however, the =Calculate new thrust
commands" operation is inherited from the Phase
Plane class.

I

Pham
P_ne

Erm¢
Atttltude Error
Rotldk_ Axis

_e thru_

¢,
I

Figure 6: Object Model for Phase Plane Module

Next, we performed more abstraction steps in order
to obtain a high-level object model for the DAP,
consisting of the State Estimator, Phase Plane, and
the Jet Select Module, corresponding to the diagram
given in Figure 1. Figure 7 gives the object model
for the DAP, where each class consists of three
parts corresponding to the name of the class, list
of attributes, and list of operations. The diamond
symbol denotes aggregation, where the class above the
diamond is said to consist of the three classes below
the diamond. If either attributes or operations are
not known (or do not exist) for a given class, then the
corresponding area is shaded.

3.3.3 Dynamic Models

This section gives the dynamic models for the phase
plane, which describes the states in which the DAP
can be with respect to the Phase.Plane component.
Also, included are the transitions that take the DAP
from one state to another. A pictorial diagram of
the envelope depicting the position of the Orbiter
is given in Figure 8. The =O" plots the current
vehicle attitude and rate errors with respect to the
phase plane. As long as the current position is
within the limits imposed by the deadbands (the
heavy lines), the deadband constraints are satisfied
and no jets will be commanded to fire. Once the
Orbiter exceeds the bounds of the "box', jets will
be commanded to fire in an effort to cancel the
errors, thereby reducing the errors and achieving the

PMBe
Plane

Rate Etm¢
Atttnude Error
Ro(atk_ Axb

C#¢ula_ thrust

commands

Figure 7: High Level Object diagram for DAP
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Figure 8: Graphical depiction of the phase plane, with
deadbanding cycles [31J

requested maneuver or maintaining the attitude hold,
whichever was requested by the crew. Once the
Orbiter returns to the deadband area, the jets will
stop firing.

Figure 9 gives an explanation of the different states
in which the Orbiter can be while it is deadbanding
[31]. Figure 10 gives a statechart depiction of the
states through which the Orbiter transitions while it is
deadbanding. The state transitions are in the form of
jets terminate (begin) firing and the Orbiter drifting
in (out) of the deadband region.

Note that Figure 8 depicts the clockwise traversal
of the states in which the Orbiter cycles through the
deadband limits. It is also possible for the Orbiter
to traverse the cycle in a counterclockwise fashion, in
which case, the arrows in Figure 10 would be reversed.

Finally, a very high-level view of the states in which
the Orbiter can be is given in Figure 11. Included
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1. No jets fire. Since the rate error is
positive, the attitude error will grow in
a positive direction.

2. Jets fire to nullify the positive rotational
rate.

3. Jets stop firing when the deadband line
is crossed, but a little negative rate
errors is inevitable.

4. No jets fire. With a negative rate
error, the attitude error will also drift
negatively.

5. Jets fire to nullify negative rate error.

6. Jets stop firing, but residual positive
rate error causes attitude error to go
positive again and the cycle repeats.

Figure 9: Explanation of deadbanding states [31]

in the diagram are the actions or conditions that
cause the Orbiter to transition from one state to the
next. The rectangle containing "Phase Plane" and the
labeled arrows pointingto the states indicate that the
state transitions describe the Phase.Plane module.

4 Lessons Learned

The results from this reverse engineering project
have provided several lessons for the overall project
as well as for future reverse engineering projects.
First, in order to obtain high-level requirements
for existing software, it is not feasible to obtain
the specifications (formal or informal) in one step.
Instead, several layers of specifications must be
developed, starting with the "as-built" specification.
The "as-built" specification closely mirrors the
programming structure of the existing software in
order to provide traceability through the different
levels of specifications. After creating the levels
of specifications, theorems need to be constructed
to demonstrate that critical properties are preserved
from one level of specification to the next.

Second, formal specification languages and their
corresponding reasoning systems provide a mechanism
for bringing together disparate sources of project
information into one integrated framework. In
particular, the project information may be in a variety
of formats, from different sources, and subjected to
varying levels of formal review. For this particular
project, information was obtained from the Functional
S_bsystem Software Requiremenfs (FSSR) document
30] (also known as Level C requiiements, consisting
argely of "wiring diagrams"), Guidance and Control
Systems Training Manual [31], source code, informal
design notes [32], and discussions with shuttle software
personnel. Accordingly, formal specifications were
constructed based on all of the information in order
to describe the phase plane operation. The PVS

Figure 10: States representing the clockwise
deadbanding of the Orbiter

Figure 11: High-level states for Orbiter with respect
to the Phase.Plane module

proof system provided a mechanism for checking the
completeness and consistency of the specifications,
while also supporting the proof construction of the
relevant theorems.

Third, the benefits of object-oriented analysis and
design can be exploited for reverse-engineering as
well as forward engineering projects. Specifically,
object-oriented analysis and design assists in the
understanding and the simplification of the complexity
of a large system. Furthermore, having an object-
oriented perspective facilitates future modifications by
providing the developer with a high-level, abstract
view of system components, thus avoiding the
difficulties associated with attempting to understand
all of the details of a large, complex system at once.

Finally, an iterative process consisting of the
construction of a level of formal specifications,
followed by a set of corresponding diagrams is needed
to develop several layers of specifications for an
existing system. The diagrams introduce abstractions
that can be used to guide the construction of
the next level of specifications. Furthermore, the
complementary diagrams available in the OMT
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approach enable the specifier to consider different
perspectives of the system with notations best suited
for the respective perspective. The major advantage
to this diagramming approach is that one notation
does not consist of many different symbols in an
attempt to capture very different aspects of a system,
which would make it too complex to use effectively.

5 Conclusions and Future Investiga-

tions
Using formal specifications and object-oriented

analysis to describe the software that implements the
Phase_P2a_e module of the DAP has demonstrated
that this rigorous technology can be used for existing,
industrial applications. Constructing the different
levels of specifications, with increasing abstraction,
supplemented by the OMT diagrams provided a means
for integrating information regarding the Phase.Plane
module from disparate sources. Having access to
this information will facilitate the verification that
the original (critical) requirements or properties
are not violated by any future changes to the
software. In addition to facilitating verification tasks,
the formal specifications can be used as the basis
for any automated processing of the requirements,
including checks for consistency and completeness.
Interaction with the requirements analyst and other
members of the original development team for the
project strongly support the conclusion that the
specification construction process, in addition to the
actual specifications are useful to the overall software
development and maintenance processes of existing
(safety-critical) systems.

Future investigations will continue to refine the
mid-level and high-level specifications and develop
more theorems to relate the different levels of
specifications. We are also investigating the
formalization of the OMT diagramming notation,
which will provide a means for using automated
techniques for extracting formal specifications from
the OMT diagrams in order to facilitate the
specification process. Furthermore, extracting the
specifications directly from the diagrams will allow
us to reason about the completeness and consistency
of the diagrammed system, thus greatly facilitating
the requirements analysis, design, and maintenance
phases of software development.
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Backgroundfor Project

• Integrate formal methods to portion of shuttle software

• Construct an object-oriented view of system

• Demonstrate the numerous utilities of formal methods in

software development

Facilitate current and future maintenance

"Due to careful review of changes, it takes an average of 2 years

for a new requirement to get implemented, tested,

and into the field."

Facilitate verification of safety-critical properties

Address one major issue encountered in industry:

reverse enginee_n9 of existing (legacy) system.

Software EnKineerlnK WoekshoD [12/93'h(5
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Formal Methods

• What is a formal method?

- Formal languages with well-defined syntax

- Well-defined semantics

- Proof systems

• Why use Formal Methods?

- Improve quality of software systems

- Reveal ambiguity, incompleteness, and

inconsistency in a system

• Important Characteristics:

- Abstraction

- Proof obligations

- Tool support

- Systematic Process

So,ware Eak,ineeriax Work,,,hoe (12/931-1

0bject-0riented Software

• Represent real-world problem domain and maps it

into software solution domain

O0 Design interconnects data objects and

processing operations

Modularizes information and processing, not just

processing

• Three Main concepts:

- Abstraction

- Information hiding

- Modularity

Software EAKi.eeri._ Wor_ f12/93}-2
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Object Modeling Technique

• Three diagramming notations give complementary

perspectives of system

- Object Model presents the architectural view

(traditional object-oriented diagramming

notation)

- Functional Model presents a functional view

(data flow diagrams)

- Dynamic Model presents the behavioral view

(state diagrams)

• More amenable to formalization than other OO

diagramming notations

• Widely used in industry and universities,

including IBM at JSC.

Software Enei_erin, Workshoo ¢12/93_-3

"What would help me do RAfor Orbit DAP"

It is highly unlikely that we'll find a product that will understand

shuttle requirements. Some degree of customization will need to

be performed in whatever tools we choose to support our formal

methods activities.

• From the beginning, shuttle requirements authors were given the

freedom to express requirements in whatever form they preferred.

• Consequently, the shuttle requirements are a combination of

many formats, styles, conventions, and perspectives.

• It has historically been very difficult to insert new technologies

into the shuttle program.

Any tool that takes steps to the existing shuttle requirements or

automatically convert the existing requirements into a format it

can understand will be much more likely to succeed.

Softwaee EnL,ineerin.[ WoeksEop (12/93]-5
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Project SelectionCriteria

• Current RTOP is demonstration project:

- Jet Select module for space shuttle

- Determine which jets should be fired to achieve

desired position(s)

- Select module that is accommodating Change

Requests

• Faculty Fellowship project complements RTOP

project

- Pho.se Plane module: control system for

monitoring angular rotation

- Determines amount of corrective action needed

Software Enlineerinl Workshop f22193_-7

Phase Plane

• JSC expressed keen interest in Phase Plane module

- JSC had difficulty fully understanding module

- Difficulty in testing module

- Will need to make changes in future

- Results feed directly to Jet Select module

• Phase Plane applicable to other spacecraft

• Main component of control system

- Uses thrusters to control angular state of spacecraft

- Monitor state errors

- Determine when and how corrective control should be applied

Software En_neerinK Work.din9 f12/931-8
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PictorialView of DAP Control Loop
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PreliminaryTasks

• Learn new specification language (PVS), including

support tools.

• Become familiar with Jet Select and Phase Plane

domain

- Functional Subsystem Software Requirements

(wiring diagrams)

- Crew Systems Training Manual

- Informal requirements discussions from JSC,

IBM, Draper Labs (software designers),

including site visit to IBM at JSC.

-Informal design notes

• Become familiar with commonly used
obJect-oriented diagramming technique and

support tools.

SdIwZR Enllirme6.g Worksh¢_ (12/93)-13.
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ProjectOverview

• Apply reverse engineering techniques

• Develop levels of specifications

• Each level is more abstract than previous

• Objective: obtain a high-level specification of requirements

• Identify and prove critical properties that link the levels.

• Develop an OMT hierarchical "roadmap" of module

• Establish linkage between specifications and OMT diagrams.

5<:K"tware Engineering Workshop (12/93)-13

IterativeProcess

• Construct low-level specifications correspond to wiring diagrams

• Use code for clarification

• Construct OMT diagrams for wiring diagrams

• Identify properties required for system.

• Construct high-level specifications for properties of Phase Plane

• Construct high-level OMT diagrams that apply to Phase Plane

• Integrate specifications with OMT diagrams.

Software Enliineelrinl¢ Wockshof> (L?./93)-14
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DynamicModelfor Deadbanding

S_w_e En_eeeria& Wocluhop (12/93)-19

More AbstractDynamicModelfor Deadbanding

Softw'a,reEnlineerlng Work,_op (12/g3)-20
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Lesson I

• More than one step from high-level requirements to existing code.

• Must create several layers of specifications

• "As-built" layer closely mirrors code (traceability)

• Need to construct theorems relating layers of specifications

.Software Engineeriel_ Workshop (12/93}-2Z

Lessonll

• Formal methods provide mechanism for integrating

disparate sources of project information.

• Project information may be:

- in a variety of formats,

- subjected to varying levels of formal reviews

-located physically apart

• Examples include:

- Functional Subsystem Software Requirements

( "wiring diagrams" )

- Crew Training Manual

- Design notes

- Discussions with shuttle software personnel.

• Use formal specifications to integrate information

from different sources.

Software Engineering Wod_sho9 (12/93)-22
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Lesson III

• Object-oriented analysis and design can be exploited for

reverse engineering tasks.

• O0 introduces abstraction to simplify complexity of system

• O0 perspective can facilitate future maintenance tasks

Software Enlpneeri.g Workshop (12/93)-23

Lesson IV

Reverse engineering process is iterative

• Constrdct level of formal specifications

• Create a set of diagrams (introduces abstraction)

• Repeat.

Software En_neerin$ Wockshop (12/93)-24
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Summary

• Incorporate formal methods into existing system

-Assist maintainers in understanding module

- Facilitate future changes

- Facilitate verification of critical properties

• Develop reverse engineering process using FM and O0

• Develop OMT models usable by RTOP project

• Identify obstacles (and solutions) in abstraction

(reverse engineering) process usable by RTOP project

• Demonstrate utility of FM and O0 on real project.

Software Eelpneedng Workshop (12/93}-25

Currentand Potential Future Tasks

Develop mid-level specifications

Construct multi-level correctness proofs

Demonstrate how FM can be used to gain

confidence in the correctness of software after

modification using critical correctness criteria and

proofs.

Integrate more closely the formal specifications

with OMT diagrams.

Saftwate EnjpneenngW,:wkshop(12/93]-26
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